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Abstract. Harmonic generation in a three-component Fibonacci optical superlattice (3CFOS)
is analysed theoretically. The Fourier spectrum of the structural function of the 3CFOS is
numerically calculated. The positions of reciprocal vectors are in good agreement with the
theoretical prediction. The intensities of the second harmonic (SH) and third-harmonic (TH)
are calculated relative to the depletion of the fundamental. The dependence of the SH and TH
intensity on structural parameters is discussed. Numerical calculation shows that, compared with
two-component Fibonacci optical superlattice(2CFOS), there are more plentiful harmonic spectrum
and adjustable structure parameters in 3CFOS. By chosen the reciprocal vectors and adjusted the
structure parameters, the higher transform efficiency of THG is obtained.

1. Introduction

One of the most striking events in condensed-matter physics in the past 15 years has been the
discovery of quasicrystals, which show many unusual physical properties [1]. Much effort
has been devoted to the studies of structure and physical properties of quasicrystals [2, 3].
A quasiperiodic superlattice is an analogue of a one-dimensional quasicrystal. Merlinet al
fabricated successfully the first quasiperiodic superlattice with molecular-beam epitaxy (MBE)
in 1985 [4]. Since then many kinds of metallic and semiconductor quasiperiodic superlattice
have been designed and produced by various techniques [5, 6]. In recent years a quasiperiodic
superlattice has been realized in dielectric crystals, and the excitation and propagation of
acoustic and optical waves have been studied both theoretically and experimentally [7–11].
For second-order nonlinear optical processes, the efficiency of parametric wave-mixing
interactions can be enhanced significantly when the phase mismatches of optical parameter
processes caused by the dispersion of the refractive index are compensated with the reciprocal
vectors provided by the quasiperiodic dielectric superlattice [12–17]. Compared with the
periodic dielectric superlattice, a quasiperiodic dielectric superlattice provides more reciprocal
vectors due to its lower space-group symmetry. Because of this, not only the quasi-phase-
matched (QPM) SHG, but also some coupled parameter processes, such as the THG and
the fourth-harmonic generation (FHG), can be realized with high efficiency [18]. Until to
now, however, these studies have been done only in the two-component Fibonacci optical
superlattice (2CFOS). The 2CFOS consists of two building blocks A and B, each composed of
a pair of oppositely polarized domains. A three-component Fibonacci superlattice (3CFOS)
is a natural extension of the 2CFOS. It has three fundamental building blocks A, B and C.
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According to the theory of QPM, the similar optical parameter processes can also occur in a
3CFOS. Moreover, the reciprocal vectors of a 3CFOS are indexed with three integers, which
means that more reciprocal vectors can be provided to participate in the QPM parameter
processes in the superlattice, therefore, the harmonic spectrum structure of 3CFOS is more
plentiful than a 2CFOS. This characteristic may be used to produce multi-wave-length QPM
second harmonic and to design high-order harmonic device. In this paper, we will discuss the
structure characterization of 3CFOS and present the theoretical results of QPM SHG and THG
in the 3CFOS.

2. Theoretical analysis

A 3CFOS is constructed from three building blocks A, B and C, each composed of a pair
of oppositely polarized domains. These fundamental blocks are shown in figure 1(a), where
l+a (b,c), l

−
a (b,c) represent the thickness of the positive domain and the negative domain in block A

(B,C) respectively. In this paperl+a is set to be equal tol+b andl+c (l+a = l+b = l+c = l) andla (b,c)
represents the length of the block A (B,C). The three types of block are arranged according to
the following rule,

S1 = A, S2 = AC, S3 = ACB, . . . , Si = Si−1 ∗ Si−3 (i > 4)

where∗ stands for concatenation. The sequence ACBAACAC· · · produces a 3CFOS (see
figure 1(b)).

As second-order nonlinear coefficients form a third-rank tensor, they change signs from the
positive domain to the negative domain. For an infinite array, the quasiperiodically modulated
effective nonlinear coefficientd(x) can be written as, by use of the Fourier transform,

d(x)

d33
= f (x) =

∑
m,n,l

f (Gm,n,l) eiGm,n,lx (1)

f (x) =
{

1 if x is in the negative domain

−1 if x is in the positive domain.

f (x) is called the structural function, which plays an important role in an optical superlattice.
According to the projection method [19], the reciprocal vectors can be written as

Gm,n,l = 2π(mη1 + nη2 + lη3)

D
(2)

wherem, n, l are integers, which label the reciprocal vectors. The set ofη is defined as:

ηi = lim
n→∞

( |Ai |n
|A1|n

)
(3)

whereAi represents theith type block, and|Ai |n represents the total number ofAi in thenth
generation. It can be proved thatηi takes the following value:

η2 = 1
3 + ( 29

54 + 1
2

√
31
27)

1/3 + ( 29
54 − 1

2

√
31
27)

1/3 η3 = ( 1
2 + 1

2

√
31
27)

1/3 + ( 1
2 − 1

2

√
31
27)

1/3

with η1 = 1. D is the average parameter of the 3CFOS,

D = laη1 + lbη2 + lcη3. (4)

From equation (2) it can be seen that the position of a given reciprocal vector is only dependent
on the average parameter. Thef (Gm,n,l) in equation (1) can be expressed on the basis of the
reverse Fourier transform as

f (Gm,n,l) = 1

iLGm,n,l

∑
j

exp(iGm,n,lLj−1)[2 exp(iGm,n,l l
+
j )− 1− exp(iGm,n,l lj )] (5)
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Figure 1. (a) The building blocks of the 3CFOS, A, B and C (the arrows indicate the direction of the
spontaneous polarization). (b) A schematic diagram of a 3CFOS. (c) The polarization orientation
of electric fields with respect to the superlattice.

whereL is the total length of the optical superlattice andLj−1 is the total length ofj−1 blocks.
l+j = l+a (b,c), lj = la (b,c). From equation (5) the Fourier spectrum of the structural function is
calculated as shown in figure 2. As shown in table 1, it can be seen that the numerical result
is in good agreement with the theoretical analysis. It is easy to prove that the strongest peaks
are those withm:n:l ≈ η1:η2:η3. This condition leads to the series of (m, n, l), which are the
so-called general Fibonacci numbers (an, an−2, an−1). All of these (an) belong to the sequence
described asan = an−1 + an−3 with a1 = a2 = 0 anda3 = 1. Then the strongest peaks satisfy

G(an+3, an+1, an+2) = G(an+2, an, an+1) +G(an, an−2, an−1) (6)

which reflects the self-similarity of the Fourier spectrum.
In an optical superlattice, the most important physical processes are the excitation and

the propagation of optical waves. In order to make use of the largest nonlinear coefficientd33

which cannot be used in an ordinary phase-matching regime, let the interfaces of each domain
be parallel to they–z plane, the optical wave propagate along thex axis and the direction of
electric fields be along thez axis (see figure 1(c)). In this case the coupled nonlinear equations
which describe the evolution of the slowly varying envelope for the fundamental, SH and TH
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Figure 2. The Fourier spectrum of the structure function in 3CFOS with the structural parameters:
D = 28.564µm, la = 16.30 µm, lb = 6.52µm, lc = 13.525µm, l = 3.50 µm. The strong
peaks are indexed.

Table 1. Comparison between positions of the reciprocal vectors predicted by analysis and
calculated by numerical method.

(1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 1, 1) (1, 0, 1) (2, 1, 3) (3, 1, 2)

Analytical 0.219 96 0.322 38 0.472 47 0.692 44 0.370 06 0.992 62 1.062 50
prediction
Numerical 0.219 75 0.322 31 0.472 59 0.692 34 0.370 04 0.992 44 1.062 38
calculation

electric fields are given by:

dE1

dx
= −i

ω1d(x)

n1c
E∗3E2 exp(−i1k′2x)− i

ω1d(x)

n1c
E∗2E1 exp(−i1k′1x)

dE2

dx
= −i

ω2d(x)

2n2c
E2

1 exp(−i1k′1x)− i
ω2d(x)

n2c
E∗1E3 exp(−i1k′2x)

dE3

dx
= −i

ω3d(x)

n3c
E1E2 exp(i1k′2x) (7)

wheren1, n2, n3 are the refractive indices of the fundamental, SH and TH, respectively;ω1(2,3)

is the angular frequency of the fundamental (SH, TH);c, the speed of light in the vacuum;

1k′1 = k2 − 2k1 = 4π

λ
(n2 − n1)

1k′2 = k3− k2 − k1 = 2π

λ
(3n3− 2n2 − n1). (8)

k1, k2, k3 represent the wavevector of the fundamental, SH and TH, respectively. ,1k′1,1k
′
2

are the phase mismatches in SHG and the sum frequency generation process, respectively.
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Figure 3. The dependence of the relative coupled constantsκ1, κ2 on the positive domain lengthl.
Other structural parameters are chosen as follows:D = 28.564µm, la = 16.3µm, lb = 6.52µm,
lc = 13.525µm.

It is convenient to introduce a new field variable,

Ai =
√
ni

ωi
Ei i = 1, 2, 3. (9)

By use of equations (1) and (9), equations (7) can be greatly simplified. In fact, only the Fourier
component which is phase matched contributes significantly to the parametric interaction. If
these non-phase-matched components are ignored, equations (7) become

dA1

dx
= −iκ2A3A

∗
2 exp(−i1k2x)− 2iκ1A2A

∗
1 exp(−i1k1x)

dA2

dx
= −iκ2A3A

∗
1 exp(−i1k2x)− iκ1A

2
1 exp(i1k′1x)

dA3

dx
= −iκ2A2A1 exp(i1k′2x) (10)

whereκ1, κ2 are coupled constants,

κ1 = d33f (Gm1,n1,l1)

2c

√
ω2

1ω2

n2
1n2

κ2 = d33f (Gm2,n2,l2)

c

√
ω1ω2ω3

n1n2n3

and1k1 = 1k′1−Gm1,n1,l1,1k2 = 1k′2 −Gm2,n2,l2.
It can be proved through derivation that

|A1(x)|2 + 2|A2(x)|2 + 3|A3(x)|2 = |A1(0)|2. (11)

This is an equation of energy conservation in an optical superlattice. It shows that our
approach is self-consistent. Equations (10) and the boundary conditions (A1(0) = 1, A2(0) =
0, A3(0) = 0) compose the basis of our numerical calculation.

3. Numerical calculation and discussion

As it is shown in equations (10) that coefficientsκ1 andκ2 determine the coupling strength of
optical parameter process, in practice we must choose coefficients with high values. From the
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(a)

(b)

Figure 4. The dependence of the relative intensity of SH, TH and the fundamental on the non-
dimensional length under different length of the positive domain. (a)l = 2.5µm; (b) l = 3.0µm;
(c) l = 3.5µm. Other structural parameters are the same as those in figure 3.

expressions ofκ1 andκ2, it can be seen that for a given fundamental wavelength the coupling
constant is proportional to the corresponding Fourier coefficientf (G). Here reciprocal vectors
(3, 1, 2) and(1, 0, 1), which have higher weight in figure 2, are chosen to compensate the phase
mismatch occurring in the THG and SHG. Therefore we obtain equations:

1k1 = 1k′1−G1,0,1 = 4π

λ
(n2 − n1)− 2π(1 · η1 + 0 · η2 + 1 · η3)

D
= 0

1k2 = 1k′2 −G3,1,2 = 2π

λ
(3n3− 2n3− n1)− 2π(3 · η1 + 1 · η2 + 2 · η3)

D
= 0. (12)
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(c)

Figure 4. (Continued)

Because we want to gain the SH and TH in a single optical superlattice, the wavelength of the
fundamental should be chosen to satisfy equations (12). We obtain the equation:

η1 + η3

3η1 + η2 + 2η3
= 2(n2 − n1)

3n3− 2n2 − n1
. (13)

It can be calculated by using the refractive index data. Below we take LiTaO3 (LT) crystal as an
example [20]. At room temperature, when the wavelength of the fundamental is 1.4135µm,

n1 = 2.126 97 λ = 1.4135µm

n2 = 2.168 56 λ/2= 0.7068µm

n3 = 2.234 40 λ/3= 0.4712µm (14)

equations (12) could be satisfied perfectly,

1k1 = −7.263× 10−7 µm−1

1k2 = −1.038× 10−7 µm−1. (15)

Once the wavelength of the fundamental wave is given, the average parameter of the 3CFOS can
be determined (D = 28.564µm, whenλ1 = 1.4135µm). In general, the lengths of building
blocks and the positive domain are adjustable structural parameters, so long as equation (2) is
satisfied. Below we discuss the effect of the structural parameters on the Fourier coefficient of
the chosen reciprocal vector. Having compared with the Fourier spectrum withla, lb, lc taking
various values, we find that when

la = 16.3µm, lb = 6.52µm, lc = 13.53µm

the Fourier coefficientsf (G3,1,2) andf (G1,0,1) are fairly large in this case. So we take these
values as structural parameters. Then we calculated the dependence of the coupling constants
κ1 andκ2 on the length of the positive domainl (shown in figure 3). We found that the curve
of κ1 shows a monotonic dependence on the length of positive domain, whereas there is a
maximum value in the curve ofκ2 at l ≈ 3µm. In order to see which value ofκ2 is appropriate
for efficient THG, we choose three values ofl around the maximum (2.5 µm, 3.0 µm and
3.5µm) to calculate the intensity of harmonic beams.
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Figures 4 show the dependence of relative intensity of the fundamental, SH, TH on the
non-dimensional lengthκ2A1(0)L with l taking various values. These figures show the same
tendency. That is, at first, the third harmonic grow more slowly than the second harmonic.
After passing through a certain length of the superlattice, the third harmonic grows much
faster. The reason for this is that the third harmonic depends strongly on the second harmonic.
Also there are some differences among these figures. When the TH reaches its maximum, the
remains of the fundamental and the SH are different. In figure 4(a) the maximum of the TH is
accompanied by the exhaustion of the SH with some fundamental left, whereas in figure 4(c)
the fundamental is used up with an appreciable SH remaining. When the structural parameter
takes the value of 3.0µm, the TH is the highest as shown in figure 4(b). In this case, both the
fundamental and the SH are almost exhausted simultaneously.

The result obtained by numerical calculation is very different from the prediction through
the small-signal approximation [18]:

I (3ω) ∝ (κ1κ2)
2

whereI (3ω) is optical intensity (I (3ω) ∝ |A(3ω)|2). This means that the decisive factor to
THG is the multiple ofκ1 andκ2. But it contradicts the numerical calculation in which the
most efficient THG does not take place when the multiple ofκ1 andκ2 is the largest.

κ1κ2 = 0.022 l = 2.5µm

κ1κ2 = 0.027 l = 3.0µm

κ1κ2 = 0.030 l = 3.5µm.

The above numerical calculation indicates that with a largerκ2, the THG might be generated
much more efficiently. This may be a result of the fact that THG is a coupled parameter
process. When the depletion of the fundamental is taken into account, the situation becomes
complicated. As can be seen in equations (10), THG depends onκ2 as well as the SH and the
fundamental. Too large a value ofκ1 means a more efficient generation of SH, which may not
be favourable to the THG, whereas a small value ofκ2 may lead to an inefficient THG (through
the sum frequency generation). In the experiment,κ2L is fixed, we can adjustA1(0) to obtain
the most efficient THG.

4. Conclusion

In summary, we have investigated the THG and SHG in a 3CFOS with the depletion of the
fundamental. The Fourier spectrum of the 3CFOS has been calculated, which shows the
harmonic spectrum structure of 3CFOS is more plentiful than a 2CFOS. Through adjusting
the structural parameters, efficient THG is obtained. The effect of the structural parameters
on the efficient THG is also discussed. The method used here can be carried over to the other
types of optical superlattice.
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